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Plates Subjected 

S U M M A R Y  
Large amplitude free vibrations of rectangular plates with different boundaries and temperature distributions are 
analyzed in the light of Berger's analysis. A successive approximate method of Poincar6 [10, 13 or a modified Galerkin 
technique is used to derive a Duffing type non-linear differential equation of which the solution is obtained by use of 
elliptic functions or by the use of method of successive approximation [7, 1]. 

The subject is treated in a simple and unified manner. Numerical results are obtained for different boundary con- 
ditions and are shown in graphical form. 

1. Introduction 

There is growing interest in the large deflection vibration problems of elastic plates particularly 
in the field of high speed aerodynamics. To the author's knowledge, only a few works are 
available in this direction. Chu and Hermann [15] used the perturbation method to solve the 
free large-deflection vibration of rectangular plate with hinged, immovable edges and with 
constant thickness. The exact solution for large-deflection vibration of the lenticular unsup- 
ported plates was discussed by Harris and Mansfield [12]. While Mansfield pointed out in his 
papers [13, 14] in 1962 and 1965 respectively about the possibility of exact solution of such a 
problem due to its lenticular section and unsupported edge, it should be noted that such exact 
solution is difficult for any supported plate with constant thickness. Sunakawa [1] used the 
Poincarr's method of successive approximation to solve the exact non-linear equations of 
heated rectangular plate with clamped or simply supported edges for both static and dynamic 
cases. But in all these studies, the fundamental equations of equilibrium or. motion are non- 
linear and coupled in character and as such they are difficult to solve. 

An approximate method for investigating the large deflections of initially flat isotropic 
plates has been proposed by Berger [4]. Though this method which consists of neglecting the 
so-called second strain invariant of the middle plane in the expression for strain energy, lacks 
sufficient technical interpretation for its justification, this analysis yields results agreeing with 
known studies for all practical purposes [4]. Since then a number of static and dynamic prob- 
lems have been solved with remarkable ease and satisfactory approximation by using this 
method [2, 3, 5]. 

The purpose of this investigation is to use Berger's technique of neglecting the second strain 
invariant of the middle surface, for the study of large amplitude free vibrations of heated 
rectangular plates with different boundary conditions. 

In this paper, the author has derived the analogue of Berger's approximation equations for 
the large amplitude free vibration of a heated rectangular plate. These approximate, decoupled 
equations are solved by employing either successive approximation method or Galerkin's 
technique. Numerical results are obtained on the digital computer IBM 1620, for different 
boundary conditions and temperature distributions. Comparisons With the known results of 
[1] asserts the usefulness of Berger's approach to yield results sufficient for all practical pur- 
poses. 
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Notation 

2a, 2b, d 
t 

U~ G W 

z(0, 0 
Zl~ Z 2 

D 

E , G  
fa 

K(K~) 
T, T ~ 

U 

0 
O,O 

Z 
03, (D ~ 
V 2 ' V 4 

length, width and thickness of the rectangular plate, respectively 
time 
displacement components in the middle plane in the x-, y-and z-directions re- 
spectively 
displacement at the centre of the plate 
absolute values of the maximum and minimum non-dimensional amplitude re- 
spectively 
flexural modulus of rigidity 

Eh 3 
D -  

12(1 - v 2) 

Young's modulus of elasticity and shear modulus, respectively 
total energy of the vibrating system 
complete elliptic integral of the first kind 
linear and non-linear periods respectively 
coefficient of linear thermal expansion and density of the plate material 
constant of integration 
non-dimensional time 
temperature change from the initial state 
mean temperature and temperature moment 
aspect ratio of the rectangular plate 
Poisson's ratio 
Airy's stress function 
linear and non-linear circular frequency respectively 
harmonic and biharmonic operators respectively 

Note : i) Subscripts "x" and "y" denote the partial differentiation with respect to x and y 
respectively. 

ii) Subscripts "s", "c" and "m" specify the quantity for the cases of the simply sup- 
ported on all edges, clamped on all edges and simply supported on two opposite 
edges and clamped on other edges respectively. 

2. Fundamental Equations 

The fundamental equations of motion of a heated rectangular plate due to Berger's analysis are 

Eo~d 2 ~2 w 
v20 = - p d  (1) DV4w-k2V2w q- 1 - v  ~2 

12D E7d 
- - -  0 = k ~ (2) d2 ex 1 - v  

where 
1 2 el = ux + v,+ ~(w x + w~) (3) 

i i ~a = 0 (x, y, z) dz (4) 0 3 J-~d 

1 { ~d zO(x, y, z)dz . (5) 0 = ~ j _ ~ d  

In the derivation of the above equations, the effect of the internal friction, aerodynamic force 
and inertia effects in the plate plane are neglected. 

Journal of Engineering MarK, Vol. 4 (1970) 39M-9 



Large amplitude free vibration of rectangular plates 41 

5t 

21 

C 2a  

(a) 
Figure 1. Rectangular elastic plate. 

i 

i 

,-w 
ZO= 0 

w = O  
Ed 2 c~O 

D(wyy+VWx~ ) + 1 - v  

(ii) Clamped on all edges 

Boundary conditions for different cases are given as follows" 
(i) Simply supported on all edges, 

w = 0  O/ 
Ed 2 ~0 at x = 0, 2a 

D (w~ + vwy,) + - 1 - ~ -  = 

) 
0~ at y = O,2b. 

/ 

! 

(6a) 

(6b) 

w = w x = 0  at x = 0 , 2 a  

w = w r = 0 at y = 0, 2b " (7) 

(iii) Simply supported on a pair of opposite edges and remaining edges clamped 

w = 0  } 

Ed2~ 0 = 0 at x = 0, 2a (Sa) 
m (wx, + vw,,) + ~ _ v 

W=Wy=O at y = 0 , 2 b .  (Sb) 

The temperature distribution ~ver the plate is assumed to be symmetrical with respect to the 
centre of plate and is given as 

inx jTzy 
O = L L O , j c o s ~ - ~ c o s w c - ,  ( i , j=0 ,2 ,4  .. . .  even) (9) 

i j ~t . r  x , u  

~ n X ~b 0 = ~ ~ 0pq sin -6~  sin , ( p ,q=l ,  3,5 . . . .  odd).  (10) 
P q 

It is assumed in equation (10) that there exists no temperature gradient through the thickness 
at the edges. Since it seems to be natural to expect that there exists no remarkable difference 
between the wave form of the present non-linear vibration and that of the small vibration [11 ], 
the lowest mode of vibration is assumed to be the same as the deflection form due to the tern- 
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perature change only, and the normal displacement of the plate at any time is assumed as the 
sum of the displacement due to the temperature change and the amplitude of vibration, as 

w(x, y; 0, t )= z(O, t)w~(x, y) (11) 

where 

z(O, t) = zo(O) + [~(t)]0 . . . . .  ,, (12) 
d 

~zx roy 
% (x, y) = sin 2a sin 2-b (13) 

wc (x, y)  = 

( (15) 1 rex 1 - C ~  WIn(X, y) = ~ sin ~a 

The expressions (13), (14) and (15) for w, satisfy the boundary conditions (6), (7) and (8) re- 
spectively. 

Using the expressions for 0 and w in equation (2) and integrating throughout the plate, we 
obtain the value of k 2 supposing that there are no in-plane displacements at the edges of the 
plate and these are as follows : 

= + 

k~ = ~D + - ~ 0oo 

k 2 =-~-D 3 + 4  - 1 - v  

For the case, when the plate is simply supported on all edges, the term 0e (temperature 
moment at the edges) is added to the right-hand side of equation (10) for the general expression 
of the temperature moment. The equation of motion (1)is solved by a successive approximation 
method due to Poincar6 [10] satisfying the boundary conditions (6), which finally gives the 
non-linear differential equation (16). However, the presence of 0e does not introduce any new 
phenomena in the present dynamic problem, but only results in complicating the calculations ; 
so the equation (16) is obtained from equation (1) for the other two cases of boundary condi- 
tions, that is clamped on all edges and two opposite edges simply supported and remaining 
edges clamped omitting the term 0e and using the modified Galerkin method only 

d2~ 
dr2 + f~ ( zo+z)3+ f l ( z o +  ~) = 9 .  (16) 

Eliminating the part in equation (16) corresponding to the deflection state due to the tempera- 
ture change only, we have the following equation corresponding to the vibration state: 

d2~ 
dz 2 + (f~ +3 f~zZ)~+3f~zo~Z+f~53  = O. 

The equation corresponding to the deflection state due to the temperature change is 

f~zo  , 3  (18) + f 3 z o  = 9 

where 
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"C~ t 

1 
12(1+v) 2 z (2b)2 _ } 

T/2 1 + 22 d- ~0oo 

f l , c -  16~z'9 3+222+32")~ -j - 16(l+v)coz 2 1 + ~5 0oo 

fl,,. 16~r~ (1 1 3 ) ( 7 t 2  ( - 3 + ~  + 1-~  -16(l+v)c~rc2 - -  1+  

f~ '* -  23rc4( l +75 1) 2 

f~,c 3zc4( 1) 2 
= 2  1+75 

=~ + 4  

g s = 1 2 ( l + v ) ~ a  1 + ~  o~ ( - 1 ) ~  ,'+',}-'- ~ o,,,~ q p2 + )~2 q2 

"~-Oe ~ (--1)�89 1 ) ~  tanh ]./m tanh ~2 ~m-(] (~b) 2 
re:odd m2 ~ {cosh #m + cosh ~ jJ - -  

(19) 

(21) 

) 0oo (22) 

(23) 

(24) 

(25) 

(16a) 

mT~ 
/4. = ~ -  (26b) 

4096(1 + 12b) 2 ~ P2+22q2 
G -  - v) - -  • Opq 22pq(p2 4)(q2_4) (27) 

P q 

Qm = --128 (l + v) e~ - -  Z 01q 1+~2q2 (28) 
q:odd 22 q ( q 2 - - 4 )  " 

Equation (17) is the equation of vibration. Equation (18) gives Zo (0) which is the static solution 
of the problem. The solutions of equation (18) have already been given by the present author 
in [-9] and the analytical solution of equation (17) is given in the following section. 

3. Analytical Solution 

Using the relation 

= fx/~a+3f~zZz (29) 

equation (17) is reduced to 

d2~ 
dr 2 + ~ + f2~2 + y3~ 3 = 0 (3O) 

where 
3f l zo  

f 2 - -  1 1 2 f l  + 3f3Zo 
f~ (31) 

f3-- 1 1 2 f~ + 3f3zo 
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The solution of equation (30) may be obtained in terms of the incomplete elliptic integral 
[7, 12], but such solution is complicated and not suitable for practical applications and there- 
fore, a method of successive approximation 1-7] is used to obtain the required solution. 

Now, by using the transformation 

if= l x / ] ~ r  (32) 

equation (30) is transformed into: 

d25 
(l+fi)d- ~- + 7 =  - f 2 5 2 - f 3  ~3 (33) 

Let z I and - z  a be the maximum and minimum amplitude respectively of the displacement 5; 
then, fi and 5 are expanded in the power series of z2 as 

fl = - f l l  z2 + fl2zZ-fisZ~ + ... (34) 

= - t /1 z 2  + - + . . .  ( 3  5 )  

Substituting equations (34) and (35) in equation (33) and equating the coefficient of z2 and its 
higher powers to zero, we obtain a set of differential equations in t/l, t/z, t/3 . . . .  with coefficients 
consisting of ill, f12, fi3 . . . . .  Solving these equations by the successive approximation method 
[1, 7], under the initial conditions t/l(0 ) = 1, t/2(0 ) = ~3(0) . . . . .  0 and 01(0)= 02(0)=//3(0) = 
. . . .  0, we can get the values of ill, fi2, r 3  . . . .  and t h, t/2, t/3 . . . . .  Thus, the solution of equation 
(33) in the final form becomes 

5 :  1 2 1 2 3 (25 ( 3  .4_ [25 ( 4  29 ( 2  ( ~ _ 5  . . . }  _~_ { - ~f2 z2 + i f 2  z2 21 4 - -  t 4 8 J 2  - -  xgf2 f3)z2 ~ tTga2 - -  ~ J 2 J 3 ] z 2  -- 

{ _ z z + l f z z ~  t 2 9 c 2  1 1 9 ( 3  35 4- 
- -  f3) + - f 3 )  + 

/ ' 6 9 7 1  ( 4  1 4 7 5 ( 2 (  - -  23 ,"2~ 5 ! 
- t2~v~J2 - 2 - ~ j 2  j 3 + yg~J3 )  z2 + . . ,  } c o s  ~ + 

1 2 3 
_ g j 2 z 2 + ( 2 f ~ _ ~ f 2 f 3 ) z 2 _ ( ~ f 2  a 8 r g f 2 f 3 ) z 2 §  5 

{ -  (4~f 2 + ~ k ) z  3 + (~8f ~ + ~ f 2 f 3 ) z  4 -  (s~6f ~ -  a@4f 2 fa - t@gf 2)zS2 + ...} 

cos 3~+ 
1 3 

{(~2f2  + 9~f2f3)z~ ~ 4 - ( 3 - ~ f 2  +7~fz f3 ) z~  + ... } cos 4~+ 
__ 5 d- 5 2 1 2 + 2-x~f2 f3 + x-ffff~f3)z2 + ..-} cos 5~+ ... (36) 

Equation (36) is the solution of equation (33) when the amplitude of vibration is expressed as 
the function of z2 and ~. Here, for the case of infinitesimal value of z2, the constant term and the. 
higher harmonic terms in equation (36) can be neglected except only the fundamental harmonic 
term which is the solution of the linear theory. Equation (36) is the periodic function with 
respect to ~ with the period, 2re. 

The period of the motion is given by 

2rc(2b)2 Pl?~ s o 

_ _ gf3)z2 _ (l~gf~ 1 a T*(t) x / f~1+3f~zg V "-" { l + ( ~ f ~  3 2 _~f2 f3 ) z2  + 

/ '385 F 4  _-975 ~e2 re - -  57 z'2~ 4 
+ t ~ J - ~  - 192a2 J 3 • ~ J 3 ] Z 2  - . . . }  �9 (37) 

Equation (36) and (37) give the amplitude and period of the nonlinear vibration of the above 
mentioned plate subjected to the change in temperature. The period is a function of the am- 
plitude, which is the characteristic of the non-linear vibration, and changes with the thermal 
stress and deflection due to the temperature change. Next, the relation between the maximum 
and minimum values of amplitude, z I and - z2, is given below : 

Applying the so-called energy integral to equation (30)~ the following equation is obtained 

Journal of Engineering Math., Vol. 4 (1970) 39-49 



Large amplitude free vibration of rectangular plates 45 

d~/ +~2 + 2f2~3 +�89 y~ = 2E. (38) 

Here, F is the total energy of the vibrating system. 
For extremum d~/d~ = 0 at ~ = zl, -z2  and this condition reduces equation (38) to 

~f3zl) z 2 ( 1 2  f2z2 + l 2 = 7f3z2) = 2E (39) 

Zl and z2 can be determined independently whenever E is given in accordance with the initial 
conditions. 

For the pre-buckling state, equation (30) is reduced to 
d2y 
d.c2 + f15 ,+ f ~ z  3 = 0 (40) 

for, in the pre-buckling state, z o = 0 gives f2 = 0. Therefore, through the energy integral, equa- 
tion (40) is reduced to 

v ~ f l  ~2 -- ~a31rl z=4 

1 5 e d4, 
= ~--- ~ 1 1 + f 3 z  212 0 N / 1 - K 2  COS2r 

where 

sin4,, KI  - f 
z2 2(f]  +fXzZz) 

The sign of the above integral is taken to be positive or negative according as ~ increases or 
decreases with the increase ofz. The period of the non-linear vibration, T* is given by 

T* (t) - 4(2b)2  . P ~  
K(K1) (41) 

, ~ f  l + f 3z~_ Vo 
where K (K ~) is the complete elliptic integral of the first kind. 

4. Numerical Example 

Let us assume the temperature distribution on the elastic plates as 

gx . ~y } 
0 = 0 =  O sin2a sm 

0 0 that is 9 = 0  (42) 

The plate buckles at the critical temperature 0~, and so its vibration behaviour is studied 
separately for each of the cases before and after the thermal buckling. 

Equations (20), (21), (22)with the help of equation (42) give 

f l ,s  = 7? + 1 
64 /~2 (2b~2 x{~)] 

(43a) rc 4 1 +22 

fl ,c 16re* 3+222+324 256(1 ~-0 (2b) 2 
- 9 24  3 + - -  ~ O  (43b) 

fl.m 16~4 0 1 3 ) 256(  39)~b)2 
- 3 + +igT s - - 5 -  1 + a V  - -  (43c) 
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~11 edges simply s~ppor~eO, 
F . . . .  All edges damped 

1 2 . 0  . . . . .  T w O  edges .~;impty supported ,,~" 1 " "  v 
a.r~ci o~er edges damped ~ G "  . . /  

w "d ~ ~ "  
I0,0 F" . .  , . . "  r , / /  

8,0 . . . . .  / "  ?, ~ ' /  

4.0 

2.0 

O = G ,*in ,6i  

. . . . . . .  ~ . . . . .  t _ I . I ! I 

O- 0.~. 0.,~ 0.6  0 . 8  1,0 1,2 
i{ O. 

Figure 2. Relatio~ between temperature  rise and deflection at the centre of plate. 

- -  All edges 5imply ,6t~pported 
. . . .  t%11 edges clamped 

Two edges 5;mply/~uppor~ed 
~nd o~h~r 4d~s  ctampea 

8.0 

6 . 0  

da 
eq 

%../ 

2.0 

O 

'llX -ay 

X 
\ 

~ �9 ! I _ t _ . : .L_ 
2. :3 /~ 4 5 6 

Figure 3. Variation of  thermal buckling coefficient with aspect ratio. 

The critical temperature Oor and the deflection at the centre of the plate after buckling are 
obtained with the help of equations 08) and (42) and shown in Fig. 2 for different eases. The 
relations between the temperature and the aspect ratio 2 are also presented in Fig. 3. The 
behaviour of the plates before and after buckling is discussed below. 
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All edges  s~mply supported 
All ed.ge5 et~mpect 
Two edges simpty st*ppor~:ed and okher 
e ~ g e s  ot~mped.  I 

1.0" 

\ \ \  ' \  " "-I~ 
o . 8 -  \\\ "x', ~-, 

o.+ 

2.5 

2.0 

1.5 

Ob/a)~) =o 02 (2b/a)~.1.o 

I I I 0 I I - I 

0.4  O.B 1.2 0.4. O-B 1.2 

ZI= :~2 ZI:  ~2 
Figure 4. Influence of large amplitude on period of vibration of rectangular plates. 

4.1. When 6)< Or = O) 

The variation of T*/T with the amplitude and temperature is given by equation (37) or (41) 
and show in Fig. 4 for different edge conditions. It is noted that the results agree with those 
obtained by Thein Wah in [2]. The variation of the circular frequency with the temperature is 
shown in Figs. 5, 6 and 7 for different boundary conditions with the amplitude as parameter. 

1.2 -I.0 -0.8 -0.6 -0.4 -0.2 
i t 

-Z2 
-0.5 

+ A 
o- .y./ 

I I  I a I I I I 
0,2 0.4 0.6 0,8 1.0 I.; 

Figure 5. Variation of frequency of vibration of plate with temperature rise and large amplitude, simply supported 
edges (2 = 1). 
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Figure 6. Variation of frequencies of vibration of plate with temperature rise and large amplitude, clamped on all 
edges (2 = 1). 

z ~  t ? 
. I~,# 

, , > /  , , , Y  , , , 'l  , \ , I 
", .  O.8 1,~ -1.0 -o.a -0.6 -0 . r  -o.z , , ' , ,~ .  0.2 0.4 0[6 ~.0 ,.2 

- E2 - ~ "  Z1 

Figure 7. Variation of frequencies of vibration of plate with temperature rise and large amplitude, simply supported on 
two opposite edges and other edges clamped (2 = 1). 

It is observed that the circular frequency for pre-buckling state decreases with the increase of 
temperature and increases with the increase of amplitude. This is in agreement with Sunakawa 
in D]. 

4.2. When 0 > O~r(ZO # O) 

Using the values of zo from equations (18) and (42) in equation (37), the variation of the circular 
frequency with the temperature for various values of amplitude is obtained for 2 = 1 and the 
behaviour is shown in Figs. 5, 6 and 7 for different edge conditions. Here, the circular frequency 
increases with the increase in temperature and decreases with the increase in amplitude when 
the temperature is constant, as observed by Sunakawa in [1]. This characteristic is opposed to 
that of the pre-buckling state. 

During the post-buckling state, Figs. 5, 6 and 7 show that the non-linear free vibration 
ceases to occur when Zz > zo or at that maximum value of z2 corresponding to which the curve 
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for O 1 > OCt intersects the abscissa at certain temperature. At this maximum absolute value of 
minimum amplitude, the plate suddenly jumps from one position of equilibrium ~ = 0 to the 
new position of equilibrium ~ = - 2 z  o (obtained from equation (38)), that is, the snap-through 
phenomenon takes place. After the occurrence of such a phenomenon, the plate will start to 
vibrate about the new position of equilibrium. 

The above results are shown when the direction of the deflection due to buckling is towards 
the upper side. Due to symmetry, a similar nature of vibration can also take place when the 
direction of the deflection due to buckling is towards the lower side. 

5. Conclusions 

Berger's analysis has been applied in deriving the simplified, decoupled equation of motion for 
large amplitude free vibration of heated rectangular plates. Poincar6's successive approxima- 
tion method in [10] or Galerkin's technique is used to derive a non-linear differential equation 
of Duffing type which is solved by the use of either successive approximation or elliptic integrals 
[7]. 

Numerical results are obtained for the vibration of a rectangular f l a t  plate subjected to 
heating with different boundary conditions such as (a) all edges simply supported, (b) all edges 
clamped and (c) two opposite edges simply supported and other edges clamped. The results 
are in remarkable agreement with the already known results in [1]. 

An analysis, such as treated here, will be of considerable importance for supersonic airplanes 
and missiles, especially in studying the non-linear transient phenomena of vibration of struc- 
tural components subjected to the thermal shock. It is also evident that Berger's approach 
presented in this paper yields results entirely adequate for many engineering applications. 
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